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Correlation effects in a simple model of a small-world network
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We analyze the effect of correlations in a simple model of a small-world network by obtaining exact
analytical expressions for the distribution of shortest paths in the network. We enter correlations into a simple
model with a distinguished site, by taking the random connections to this site from an Ising distribution. Our
method shows how the transfer-matrix technique can be used in the new context of small-world networks.

DOI: 10.1103/PhysRevE.65.036122 PACS number~s!: 05.40.2a, 05.20.2y, 89.75.Hc
rk

b

re
v

ra

st

o
th
rk

o

e
es
a
rk

ch
n
gy

-

e
f

a
-
ss
bi
an
g
se
ne

r-
m
st
tatic
ted
ave

-
-

the
r-
into
ites

e is
rks
er-
ires
all
f the
rk
tral
ns.

ng a
hi-
mi-
t

nit
g is

d-
Fig.

to
ter.
n-

ill
I. INTRODUCTION

Real networks, such as social networks, neural netwo
power grids, and documents in the World Wide Web@2–5#,
can be modeled neither by totally random networks nor
regular ones~see@4,6,7#, and references therein for review!.
While locally they are clustered as in regular networks,
mote sites have often the chance of being connected
shortcuts, as in random graphs, hence reducing the ave
distance between sites in the network.

In a regular networks withN vertices, the average shorte
path between two vertices^ l & and the clustering coefficientC
scale, respectively, aŝl &;N and C;1. The clustering co-
efficient C is defined as the average ratio of the number
existing connections between neighbors of a vertex to
total possible connections among them. In random netwo
however we havêl &; ln N andC;1/N @8,9#.

The properties of many real networks are a hybrid
these two extremes, that is, in these networks one has^ l &
; ln N and C;1. These two effects, collectively called th
small-world effect, are attributed, respectively, to the pr
ence of shortcuts and the many interconnections that usu
exist between the neighboring nodes of such netwo
@10–12#.

In 1998, Watts and Strogatz@13# introduced a simple
model of networks showing the small-world behavior, whi
since then has been investigated as a model of intercon
tions in many different contexts, ranging from epidemiolo
@14–16#, to polymer physics@17–19#, and evolution and
navigation@20–22#. The original model of Watts and Stro
gatz contained a free parameterp, varying which one could
interpolate between random and irregular networks. Th
model, called hereafter the WS model, consists of a ring oN
sites in which each site is connected to its 2k nearest neigh-
bors, hence making a regular network. After this stage, e
bond is rewired with probabilityp to another randomly cho
sen site. The value ofp tunes the amount of randomne
introduced into the network. Since there is a finite proba
ity of disconnecting the whole network in this way, Newm
and Watts@23# modified the model by replacing the rewirin
stage by just addition of shortcuts between randomly cho
sites on the ring. Since then many more variants and ge
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alizations of small-world networks and their different cha
acteristics ~e.g., their topology, the properties of rando
walks on them, etc.! have been studied. Of particular intere
are three classes of studies. The first class, in which the s
properties of small-world networks have been investiga
@24–27#, the second class, where dynamical aspects h
been studied@28,29# and the third class, in which evolving
networks are considered@30,31# in order to generate small
world networks with various connectivity distributions, in
cluding scale-free distributions.

In this paper we want to consider another variant of
small-world network, one in which correlation of neighbo
ing nodes in making connections to remote sites is taken
account~i.e., the presence of a shortcut between two s
affects other shortcuts in the neighborhood!. For example, a
node need not make a shortcut to a remote site if ther
such a connection in its neighborhood. In such netwo
then, correlations play an important role. However to p
form such a study by exact non-mean-field methods requ
a simplification in the original model. We assume that
shortcuts are made via a distinguished site at the center o
ring. More than being a simplification, this type of netwo
has practical relevance in many situations where a cen
distinguished site governs all the remote interconnectio
We note in passing that such central sites accommodati
large number of connections, may exist either in the arc
tecture of the original networks or else may appear dyna
cally in evolving networks@32#. In this way we assume tha
contrary to the original model@1#, the two configurations in
Fig. 1, both with five shortcuts are not equiprobable.

II. THE MODEL AND SMALL-WORLD QUANTITIES

We consider a circular network ofN vertices with a dis-
tinguished central site, Fig. 2. The links on the ring have u
length. Each shortcut connecting any two sites on the rin
also of unit length. We assign a random variablesiP$0,1% to
each sitei of the ring. This random variable is 1 or 0 accor
ing to whether the site is connected to the center or not,
2. Any configuration of these spin variables corresponds
one and only one configuration of connections to the cen
For example in Fig. 1 if each bond is independently co
nected to the center with probabilityp, then the probabilities
of both configurations are equal and proportional top5(1
2p)11. In general, and in the absence of correlations we w
have
©2002 The American Physical Society22-1
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P5
1

Z S p

12pD s11s21•••1sN

, ~1!

where Z is a normalization constant. To consider correlati
we generalize the above distribution to an Ising-type dis
bution, namely, to

P$si%5
1

Z S )
i 51

N

r sizsisi 11D . ~2!

FIG. 2. A simple model of small-world networks.

FIG. 1. Two configurations that have different weights in o
calculations but equal weights in@1#.
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For z51 andr 5p/(12p) we obtain the original mode
of @1#. The value ofz controls the correlations.

First let us consider the directed model, i.e., the links
the circle are directed, say, clockwise. We consider a typ
configuration such as the one shown in Fig. 3, in which
nearest shortcuts to sites 1 andj are connected at sitesi and
k. This configuration reduces the distance between site
and j by an amountk2 i 21. Note that the sites betweeni
andk may or may not be connected to the center. In any s
configuration the quantityXi ,k(1,j ) defined as

~12s1!•••~12si 21!sisk~12sk11!•••~12sj ! ~3!

takes the value 1. The average of this quantity gives
probability of such a configuration. In order to find the pro
ability of the shortest path between sites 1 andj to be equal
to l, we have to sum over all those configurations that g
such a shortest path. ForlÞ j 21 the above probability is
given by

p~1,j ; l !5(
i 51

l

^Xi , j 1 i 2 l~1,j !&, ~4!

where we have used̂•••& for averaging over configurations
Normalization determinesP(1,j ; j 21) via

p~1,j ; j 21!512(
l 51

j 22

p~1,j ; l !. ~5!

The probability that the shortest path between two arbitr
vertices be of lengthl is obtained from

FIG. 3. A typical configuration that decreasesl 1 j .
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p~ l !51/N (
j 5 l 11

N

p~1,j ; l !. ~6!

Now the average shortest path between two rando
chosen sites is

^ l &5 (
l 51

N21

lp~ l !. ~7!

All the above quantities can be calculated by the trans
matrix method, in which we write the unnormalized distrib
tion ~2! as a product of matrix elements of a matrixT,

T5S 1 Ar

Ar r z
D , ~8!

with eigenvalues

l65
1

2
@11r z6A~12r z!214r #. ~9!

The partition function isZ5l1
N 1l2

N and the number of
connections per site is given by

pª
r

N

]

]r
ln Z. ~10!

We now consider the continuum limit of the lattice, whe
the number of vertices goes to infinity and the lattice co
stant goes to zero as 1/N so that the periphery of the lattice
kept constant at 1. We then setj /N→x,k/N→s,i /N→t,
l /N→z, andNXi ,k(1,j )→X(t,s)(x), where the explicit form
of the functionX(t,s)(x) will be determined later. We will
then have 0<x,t,s,z<1. Herex is the distance along th
ring.

Furthermore, we takeNp(1,j ,l )→Q(x,z), therefore

Q~x,z!5E
0

z

X~ t,x1t2z!~x!dt,

Q~z!5E
z

1

Q~x;z!dx, ~11!

where Q(x,z)dz is the probability that two points whos
distance along the ring isx have a shortest distance betwe
z andz1dz. ThenQ(z)dz is the probability that the shortes
path between any two points be betweenz and z1dz . So
*0

1dzQ(z)51 and finally

^z&5E
0

1

zQ~z!dz. ~12!

The scaling limit

Intuitively we expect that in the scaling limit, whenN
→` and r 5r 0 /N, if we keepz finite, then the number o
connections to the center remains finite and in an infin
lattice the configurations of these connections become q
03612
ly
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sparse and hence correlations cannot play a role, at lea
leading order. Exact calculation also verifies this expectat
Here we will consider a different scaling limit whereN
→` and r 5r 0 /N while z5z0N. This means that the ten
dency of an individual, one of whose neighbors has be
connected to the center, depends also on the total popula
This assumption is not far from reality, specially in cas
where the center approves a limited amount of connecti
and the applicants, competing for connections, are awar
this restriction. It turns out that the model shows three d
tinct behaviors according to the value of the parameterr 0z0.

For r 0z0.1 we will have

l15r 0z01
r 0

N~r 0z021!
,

l2512
r 0

N~r 0z021!
, ~13!

and from~10! we find

p512OS 1

ND , ~14!

which means that the whole lattice is filled with connection
Also for r 0z051 we obtainp51/2, which is also far from
the small-world regime. To be in the small-world regime, w
should keepr 0z0,1, which is the case that we will study i
detail.

In this case we have

l1511
r 0

N~12r 0z0!
,

l25r 0z02
r 0

N~12r 0z0!
. ~15!

Also from Eq.~10! we find the total number of connection
to be the finite value

M0ªNp5
r 0

~12r 0z0!2
. ~16!

To calculateXi ,k(1,j ) we note that sincep→0 as 1/N, the
values of these quantities where either or both ofi andk take
the extreme values 1 orj are suppressed. Using the transfe
matrix technique, we obtain from Eqs.~2! and ~3! that for
1, i ,k, j ,

^Xi ,k~1,j !&5T00
i 22T01~Tk2 i !11T10T00

j 2k21~TN2 j 11!00

5r ~Tk2 i !11~TN2 j 11!00, ~17!

whereTi j
m5^ i uTu j &m and (Tm) i j 5^ i uTmu j &. DiagonalizingT,

using Eqs.~8! and ~9!, and taking the continuum limit, we
find after some algebra,

X~s2t !~x!5M2e2MxeM (s2t), ~18!
2-3
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whereMªr 0 /(12r 0z0). Inserting this value in Eq.~11! and
integrating we find

Q~x;z!5zM2e2Mz, ~19!

Q~z!5z~12z!M2e2Mz1~11zM!e2Mz. ~20!

Turning to Eq.~12! we obtain

^z&5
1

M
~21e2M !2

3

M2
~12e2M !. ~21!

As expressed in@1#, these relations already hint at th
emergence of a type of small-world behavior, i.e., with co
necting only ten sites the average shortest path is redu
from 1

2 to 0.17; connecting ten more sites reduces this va
to 0.09.

We see that as far asz0,1/r 0, the effect of correlations is
only to modify the relations of@1# by replacingM0, the
actual number of connections, with an effective oneM. Ex-
pressingM in terms of M0 and z0 alone, we findM0
5M (11Mz0), which means that for low values ofz0 , M
;M0 while for large values ofz0 the effective number of
connections scales as the square root of the actual numb
shortcuts,M;AM0 /z0. This effect reflects the tendency o
the shortcuts to get clustered under the influence of corr
tions. Hence correlations tend to decrease the small-w
effect, since the connections tend to bunch into clusters.

III. UNDIRECTED AND CLUSTERED NETWORKS

As far as we haveN→` and M05finite, we can gener-
alize our results to the cases where~a! the network has no
preferred direction and~b! each site of the ring is connecte
to 2k of its neighbors. In this limit, in going from one site o
the ring to another one, one travels mostly along the ri
Thus denoting the average shortest paths for the above c
respectively, bŷ^z&&a and ^̂ z&&b we have

^̂ z&&a5
1

2
^̂ z&&, ^̂ z&&b5

1

k
^̂ z&&, ~22!
nz

-

,
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from which we obtain

Qa~z!52Q~2z!, 0<z<
1

2
~23!

and

Qb~z!5kQ~kz!, 0<z<
1

k
. ~24!

And finally, for the clustered undirected model, one will ha

Qab~z!52kQ~2kz!, 0<z<
1

2k
. ~25!

IV. CONCLUSION

We have considered the effect of correlations in a sim
model of a small-world network, and shown that they gen
ally decrease the small-world effect, since under this con
tion the connections tend to bunch into clusters. More c
cretely, in our simple model the effect of correlations, whi
are controlled by a parameterz0, is to reduce~for largez0)
the actual number of shortcutsM0 to an effective oneM
;AM0 /z0, indicating a clustering of connections to bunch
in the lattice.

Therefore it seems that the optimal way of designing
small-world network would be with equidistant long-rang
connections, and in order to see the small-world effect a
lower the average shortest path, one would rather use a
rithms that anticorrelate the connections. We have deri
our results by exact analytical methods and have shown
the transfer-matrix technique can be used for obtaining s
properties as average shortest path or the distribution
shortest paths in a model of a small-world network. For
this we have been forced to study a restricted class of m
els. No doubt by doing computer simulations, one can st
these effects in a much broader class of models.
ys.
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