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Correlation effects in a simple model of a small-world network
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We analyze the effect of correlations in a simple model of a small-world network by obtaining exact
analytical expressions for the distribution of shortest paths in the network. We enter correlations into a simple
model with a distinguished site, by taking the random connections to this site from an Ising distribution. Our
method shows how the transfer-matrix technique can be used in the new context of small-world networks.
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[. INTRODUCTION alizations of small-world networks and their different char-
acteristics(e.g., their topology, the properties of random

Real networks, such as social networks, neural networkgyalks on them, etg.have been studied. Of particular interest
power grids, and documents in the World Wide Wéb-5],  are three classes of studies. The first class, in which the static
can be modeled neither by totally random networks nor byproperties of small-world networks have been investigated
regular onegsee[4,6,7], and references therein for revipw [24-27, the second class, where dynamical aspects have
While locally they are clustered as in regular networks, re-been studied28,29 and the third class, in which evolving
mote sites have often the chance of being connected viaetworks are considerd®0,31] in order to generate small-
shortcuts, as in random graphs, hence reducing the average®rld networks with various connectivity distributions, in-
distance between sites in the network. cluding scale-free distributions.

In a regular networks witl vertices, the average shortest  In this paper we want to consider another variant of the
path between two verticés) and the clustering coefficie@  small-world network, one in which correlation of neighbor-
scale, respectively, a@$)~N andC~1. The clustering co- ing nodes in making connections to remote sites is taken into
efficient C is defined as the average ratio of the number ofaccount(i.e., the presence of a shortcut between two sites
existing connections between neighbors of a vertex to thaffects other shortcuts in the neighborhpdéor example, a
total possible connections among them. In random networkg)ode need not make a shortcut to a remote site if there is
however we havél)~InN andC~1/N [8,9]. such a connection in its neighborhood. In such networks

The properties of many real networks are a hybrid ofthen, correlations play an important role. However to per-
these two extremes, that is, in these networks one(Has form such a study by exact non-mean-field methods requires
~InN andC~1. These two effects, collectively called the @ simplification in the original model. We assume that all
small-world effect, are attributed, respectively, to the presshortcuts are made via a distinguished site at the center of the
ence of shortcuts and the many interconnections that usualljng. More than being a simplification, this type of network
exist between the neighboring nodes of such network$as practical relevance in many situations where a central
[10-17. distinguished site governs all the remote interconnections.

In 1998, Watts and Strogatzl3] introduced a simple We note in passing that such central sites accommodating a
model of networks showing the small-world behavior, whichlarge number of connections, may exist either in the archi-
since then has been investigated as a model of interconnetgcture of the original networks or else may appear dynami-
tions in many different contexts, ranging from epidemiologycally in evolving network432]. In this way we assume that
[14-16, to polymer physic§17-19, and evolution and contrary to the original modéll], the two configurations in
navigation[20—2J. The original model of Watts and Stro- Fig. 1, both with five shortcuts are not equiprobable.
gatz contained a free parametgrvarying which one could
interpolate between random and irregular'networkg. Their || THE MODEL AND SMALL-WORLD QUANTITIES
model, called hereafter the WS model, consists of a riny of
sites in which each site is connected to itsriearest neigh- We consider a circular network & vertices with a dis-
bors, hence making a regular network. After this stage, eactinguished central site, Fig. 2. The links on the ring have unit
bond is rewired with probability to another randomly cho- length. Each shortcut connecting any two sites on the ring is
sen site. The value g tunes the amount of randomness also of unit length. We assign a random variagle {0,1} to
introduced into the network. Since there is a finite probabil-each sité of the ring. This random variable is 1 or O accord-
ity of disconnecting the whole network in this way, Newmaning to whether the site is connected to the center or not, Fig.
and Wattq 23] modified the model by replacing the rewiring 2. Any configuration of these spin variables corresponds to
stage by just addition of shortcuts between randomly choseane and only one configuration of connections to the center.
sites on the ring. Since then many more variants and geneFor example in Fig. 1 if each bond is independently con-

nected to the center with probabilipy then the probabilities

of both configurations are equal and proportionalpf{1
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FIG. 3. Atypical configuration that decreades.

For (=1 andr=p/(1—p) we obtain the original model
of [1]. The value of{ controls the correlations.
FIG. 1. Two configurations that have different weights in our First let us consider the directed model, i.e., the links on

calculations but equal weights [a]. the circle are directed, say, clockwise. We consider a typical
configuration such as the one shown in Fig. 3, in which the

1( p |Stfsetootsw nearest shortcuts to sites 1 gnare connected at sitésand
P= 7 rp) ) (1) k. This configuration reduces the distance between sites 1

andj by an amounk—i—1. Note that the sites betweén
where Z is a normalization constant. To consider correlationgndk may or may not be connected to the center. In any such
we generalize the above distribution to an Ising-type distri-configuration the quantit¥; ,(1,j) defined as
bution, namely, to
(1=sp) - (1=si_)sis(1=sks1) - (1=s) (3

N
P{s}= %(H rsigsisiﬂ). (2) takes t.h'e value 1. The average of this quantity gives the
= probability of such a configuration. In order to find the prob-
ability of the shortest path between sites 1 qiid be equal
to |, we have to sum over all those configurations that give
such a shortest path. Fosj—1 the above probability is
given by

|
p<1,1;|>=i=21 (Xij+i-1(LD)), (4)

where we have used - - ) for averaging over configurations.
Normalization determineB(1,j;j—1) via

ji—2

|o<1,j;j—1)=1—§1 p(L;1). (5)

The probability that the shortest path between two arbitrary
FIG. 2. A simple model of small-world networks. vertices be of length is obtained from
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N sparse and hence correlations cannot play a role, at least to

p(l)=1/N E p(1,j;1). (6) leading order. Exact calculation also verifies this expectation.

j=l+1 Here we will consider a different scaling limit whemg
o andr=rqy/N while {={N. This means that the ten-

ncy of an individual, one of whose neighbors has been
connected to the center, depends also on the total population.

N-1 This assumption is not far from reality, specially in cases
(Y= Z Ip(l). (7) where the center approves a limited amount of connections
=1 and the applicants, competing for connections, are aware of

Now the average shortest path between two randoml)g(;
chosen sites is

All the ab . b lculated by th ‘ this restriction. It turns out that the model shows three dis-
tt_e a t?]ved q_uan;]lfuehs can 'te ti]a culate ?’ t de dt'r(’in'z ®finct behaviors according to the value of the paramegé&g.
matrix method, in which we write the unnormalized distribu- =~ - folo>1 we will have

tion (2) as a product of matrix elements of a matfix

)
1 v N =rolot ———,
:( g , (8) +=Tolo N(rolo—1)
Jrorg
. . lo
with eigenvalues N=1- — 13
. N(roZo— 1) 13
1
)\i=§[1+r§i V(1—r{)%+4r]. (99  and from(10) we find
The partition function iZ=\" +\" and the number of p=1-0|=|, (14)
connections per site is given by N
r d which means that the whole lattice is filled with connections.
p=y 7y NZ (100 Also for rofy=1 we obtainp=1/2, which is also far from

the small-world regime. To be in the small-world regime, we
We now consider the continuum limit of the lattice, where should keep o{y<1, which is the case that we will study in
the number of vertices goes to infinity and the lattice con-detail.
stant goes to zero asNLso that the periphery of the lattice is  In this case we have
kept constant at 1. We then sptN—Xx,k/IN—s,i/N—t,
[/N—z, andNX; ((1,j)— X(t,s)(x), where the explicit form N =14 lo
of the functionX(t,s)(x) will be determined later. We will * N(1-rglg)’
then have &x,t,s,z<1. Herex is the distance along the

ring. Mo 15
iN— N=rolo— v -
Furthermore, we tak®lp(1,j,l)— Q(X,z), therefore 0do N(1—rolo)
Q(x,2)= JZX(tixﬁ—t—z)(x)dt, Also from Eq.(10) we find the total number of connections
0 to be the finite value
' r
Q(Z):L Q(x;z)dx, (11) Mg=Np= ———— 5 (16)
(1-rolo)

where Q(x,z)dz is the probability that two points whose

distance along the ring ishave a shortest distance between

zandz+dz. ThenQ(z)dzis the probability that the shortest

path between any two points be betweeandz+dz . So
sdzQ(z)=1 and finally

To calculateX; ((1,j) we note that since—0 as 1N, the
values of these quantities where either or botharidk take
the extreme values 1 grare suppressed. Using the transfer-
matrix technique, we obtain from Eq&) and (3) that for
1<i<k<j,

= leQ(Z)dZ' (12) (Xi k(L)) =Too Tor(TK )11 T16The  HTN T )49
0 H .
=r(T) (TN g, (17)

whereT{'=(i[T[j)™ and (T™);; =(i|T™]). DiagonalizingT,
Intuitively we expect that in the scaling limit, whe using Egs.(8) and (9), and taking the continuum limit, we

—o andr=rq/N, if we keep( finite, then the number of find after some algebra,

connections to the center remains finite and in an infinite

lattice the configurations of these connections become quite X(s—t)(x)=M?2e MxgM(s—1) (19

The scaling limit
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whereM :=ry/(1—ry{p). Inserting this value in Eq11) and  from which we obtain
integrating we find

_ 1
A(x;z)=zM’e ™, (19 Qu(2)=2Q(22), O=z=3 (23)
Q(2)=z(1-z)M?e M2+ (1+zM)e M2, (20
d
Turning to Eq.(12) we obtain an
L - 3 - =k9O(k 0= sl 24
(2)= g 2re - sa-e ™. (21) (2)=kQ(kz), Osz=y. (24)

As expressed if1], these relations already hint at the And finally, for the clustered undirected model, one will have
emergence of a type of small-world behavior, i.e., with con-
necting only ten sites the average shortest path is reduced 1
from 3 to 0.17; connecting ten more sites reduces this value Qan(2)=2kQ(2kz), Osz=5. (25
to 0.09.
We see that as far d3<<1/r, the effect of correlations is
only to modify the relations of1] by replacingM, the V. CONCLUSION

actual number of connections, with an effective dvieEx- _ o _
pressingM in terms of My and £, alone, we findM, We have considered the effect of correlations in a simple

=M(1+M¢y), which means that for low values gf,, M Model of a small-world network, and shown that they gener-
~M, while for large values of, the effective number of ally decrease the small-world effect, since under this condi-
connections scales as the square root of the actual number #n the connections tend to bunch into clusters. More con-
shortcuts M ~ My /Z,. This effect reflects the tendency of cretely, in our simple model the effect of correlations, which
the shortcuts to get clustered under the influence of correl® controlled by a parametgs, is to reduce(for large {o)
tions. Hence correlations tend to decrease the small-worlfe actual number of shortcutd, to an effective onev

effect, since the connections tend to bunch into clusters. ~VMo/Zo, indicating a clustering of connections to bunches
in the lattice.
IIl. UNDIRECTED AND CLUSTERED NETWORKS Therefore it seems that the optimal way of designing a

small-world network would be with equidistant long-range
As far as we havéN—oo and M y=finite, we can gener- connections, and in order to see the small-world effect and
alize our results to the cases whéeg the network has no lower the average shortest path, one would rather use algo-
preferred direction an¢b) each site of the ring is connected rithms that anticorrelate the connections. We have derived
to 2k of its neighbors. In this limit, in going from one site of our results by exact analytical methods and have shown how
the ring to another one, one travels mostly along the ringthe transfer-matrix technique can be used for obtaining such
Thus denoting the average shortest paths for the above casesoperties as average shortest path or the distribution of

respectively, by(z)), and{z)), we have shortest paths in a model of a small-world network. For all
1 . this we have been forced to study a restricted class of mod-
_= _= els. No doubt by doing computer simulations, one can study
(@)a 2<<Z>> (2 k«z»’ (22 these effects in a much broader class of models.
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